Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Note on Generalized Locally Toeplitz Operators (2407.13190v2)

Published 18 Jul 2024 in math.NA and cs.NA

Abstract: Generalized Locally Toeplitz (GLT) matrix sequences arise from large linear systems that approximate Partial Differential Equations (PDEs), Fractional Differential Equations (FDEs), and Integro-Differential Equations (IDEs). GLT sequences of matrices have been developed to study the spectral/singular value behaviour of the numerical approximations to various PDEs, Fades and IDEs. These approximations can be achieved using any discretization method on appropriate grids through local techniques such as Finite Differences, Finite Elements, Finite Volumes, Isogeometric Analysis, and Discontinuous Galerkin methods. Spectral and singular value symbols are essential for analyzing the eigenvalue and singular value distributions of matrix sequences in the Weyl sense. In this article, we provide a comprehensive overview of the operator-theoretic aspect of GLT sequences. The theory of GLT sequences, along with findings on the asymptotic spectral distribution of perturbed matrix sequences, is a highly effective and successful method for calculating the spectral symbol f. Therefore, developing an automatic procedure to compute the spectral symbols of these matrix sequences would be advantageous, a task that Ahmed Ratnani, N S Sarathkumar, S. Serra-Capizzano have partially undertaken. As an application of the theory developed here, we propose an automatic procedure for computing the symbol of the underlying sequences of matrices, assuming they form a GLT sequence that meets mild conditions.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.