Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Limits to Predicting Online Speech Using Large Language Models (2407.12850v2)

Published 8 Jul 2024 in cs.CL, cs.CY, and cs.LG

Abstract: We study the predictability of online speech on social media, and whether predictability improves with information outside a user's own posts. Recent theoretical results suggest that posts from a user's social circle are as predictive of the user's future posts as that of the user's past posts. Motivated by the success of LLMs, we empirically test this hypothesis. We define predictability as a measure of the model's uncertainty, i.e., its negative log-likelihood on future tokens given context. As the basis of our study, we collect 10M tweets for ``tweet-tuning'' base models and a further 6.25M posts from more than five thousand X (previously Twitter) users and their peers. Across four LLMs ranging in size from 1.5 billion to 70 billion parameters, we find that predicting a user's posts from their peers' posts performs poorly. Moreover, the value of the user's own posts for prediction is consistently higher than that of their peers'. We extend our investigation with a detailed analysis on what's learned in-context and the robustness of our findings. From context, base models learn to correctly predict @-mentions and hashtags. Moreover, our results replicate if instead of prompting the model with additional context, we finetune on it. Across the board, we find that predicting the posts of individual users remains hard.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.