Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Aligning Model Evaluations with Human Preferences: Mitigating Token Count Bias in Language Model Assessments (2407.12847v1)

Published 5 Jul 2024 in cs.CL, cs.AI, and cs.HC

Abstract: The SLAM paper demonstrated that on-device Small LLMs (SLMs) are a viable and cost-effective alternative to API-based LLMs, such as OpenAI's GPT-4, offering comparable performance and stability. However, SLAM also identified discrepancies between human preferences and traditional auto-evaluators. This follow-up paper explores methods to align LLM evaluator preferences with human evaluations by addressing biases, particularly toward higher token counts. We employed Bayesian statistics and a t-test to quantify this bias and developed a recalibration procedure to adjust the GPTScorer. Our findings significantly improve aligning the recalibrated LLM evaluator with human evaluations across multiple use cases. For instance, spearman's ranking correlation score in the Recommendation use case improved from -27.27 to 44.55. These results highlight the importance of accounting for biases in automated evaluations to ensure fair and accurate model assessments. The recalibration process enhances the reliability of automated evaluators, leading to better AI models that align with human values and expectations. This study provides a robust methodology for future research into bias correction and emphasizes the feasibility and benefits of developing human-aligned AI evaluation systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: