Papers
Topics
Authors
Recent
2000 character limit reached

Identifying the Source of Generation for Large Language Models (2407.12846v1)

Published 5 Jul 2024 in cs.CL and cs.LG

Abstract: LLMs memorize text from several sources of documents. In pretraining, LLM trains to maximize the likelihood of text but neither receives the source of the text nor memorizes the source. Accordingly, LLM can not provide document information on the generated content, and users do not obtain any hint of reliability, which is crucial for factuality or privacy infringement. This work introduces token-level source identification in the decoding step, which maps the token representation to the reference document. We propose a bi-gram source identifier, a multi-layer perceptron with two successive token representations as input for better generalization. We conduct extensive experiments on Wikipedia and PG19 datasets with several LLMs, layer locations, and identifier sizes. The overall results show a possibility of token-level source identifiers for tracing the document, a crucial problem for the safe use of LLMs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.