Papers
Topics
Authors
Recent
2000 character limit reached

Data Generation Using Large Language Models for Text Classification: An Empirical Case Study (2407.12813v2)

Published 27 Jun 2024 in cs.CL and cs.AI

Abstract: Using LLMs to generate synthetic data for model training has become increasingly popular in recent years. While LLMs are capable of producing realistic training data, the effectiveness of data generation is influenced by various factors, including the choice of prompt, task complexity, and the quality, quantity, and diversity of the generated data. In this work, we focus exclusively on using synthetic data for text classification tasks. Specifically, we use natural language understanding (NLU) models trained on synthetic data to assess the quality of synthetic data from different generation approaches. This work provides an empirical analysis of the impact of these factors and offers recommendations for better data generation practices.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.