Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-Granularity and Multi-modal Feature Interaction Approach for Text Video Retrieval (2407.12798v1)

Published 21 Jun 2024 in cs.CV

Abstract: The key of the text-to-video retrieval (TVR) task lies in learning the unique similarity between each pair of text (consisting of words) and video (consisting of audio and image frames) representations. However, some problems exist in the representation alignment of video and text, such as a text, and further each word, are of different importance for video frames. Besides, audio usually carries additional or critical information for TVR in the case that frames carry little valid information. Therefore, in TVR task, multi-granularity representation of text, including whole sentence and every word, and the modal of audio are salutary which are underutilized in most existing works. To address this, we propose a novel multi-granularity feature interaction module called MGFI, consisting of text-frame and word-frame, for video-text representations alignment. Moreover, we introduce a cross-modal feature interaction module of audio and text called CMFI to solve the problem of insufficient expression of frames in the video. Experiments on benchmark datasets such as MSR-VTT, MSVD, DiDeMo show that the proposed method outperforms the existing state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com