Papers
Topics
Authors
Recent
2000 character limit reached

Visually Robust Adversarial Imitation Learning from Videos with Contrastive Learning (2407.12792v2)

Published 18 Jun 2024 in cs.LG and cs.CV

Abstract: We propose C-LAIfO, a computationally efficient algorithm designed for imitation learning from videos in the presence of visual mismatch between agent and expert domains. We analyze the problem of imitation from expert videos with visual discrepancies, and introduce a solution for robust latent space estimation using contrastive learning and data augmentation. Provided a visually robust latent space, our algorithm performs imitation entirely within this space using off-policy adversarial imitation learning. We conduct a thorough ablation study to justify our design and test C-LAIfO on high-dimensional continuous robotic tasks. Additionally, we demonstrate how C-LAIfO can be combined with other reward signals to facilitate learning on a set of challenging hand manipulation tasks with sparse rewards. Our experiments show improved performance compared to baseline methods, highlighting the effectiveness of C-LAIfO. To ensure reproducibility, we open source our code.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.