Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Dual Imperative: Innovation and Regulation in the AI Era (2407.12690v2)

Published 23 May 2024 in cs.CY, cs.AI, and cs.SI

Abstract: This article addresses the societal costs associated with the lack of regulation in Artificial Intelligence and proposes a framework combining innovation and regulation. Over fifty years of AI research, catalyzed by declining computing costs and the proliferation of data, have propelled AI into the mainstream, promising significant economic benefits. Yet, this rapid adoption underscores risks, from bias amplification and labor disruptions to existential threats posed by autonomous systems. The discourse is polarized between accelerationists, advocating for unfettered technological advancement, and doomers, calling for a slowdown to prevent dystopian outcomes. This piece advocates for a middle path that leverages technical innovation and smart regulation to maximize the benefits of AI while minimizing its risks, offering a pragmatic approach to the responsible progress of AI technology. Technical invention beyond the most capable foundation models is needed to contain catastrophic risks. Regulation is required to create incentives for this research while addressing current issues.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)