Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tree algebras and bisimulation-invariant MSO on finite graphs (2407.12677v4)

Published 17 Jul 2024 in cs.LO

Abstract: We establish that the bisimulation invariant fragment of MSO over finite transition systems is expressively equivalent over finite transition systems to modal mu-calculus, a question that had remained open for several decades. The proof goes by translating the question to an algebraic framework, and showing that the languages of regular trees that are recognized by finitary tree algebras whose sorts zero and one are finite are the regular ones, ie. the ones expressible in mu-calculus. This corresponds for trees to a weak form of the key translation of Wilke algebras to omega-semigroup over infinite words, and was also a missing piece in the algebraic theory of regular languages of infinite trees for twenty years.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.