Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SG-NeRF: Neural Surface Reconstruction with Scene Graph Optimization (2407.12667v1)

Published 17 Jul 2024 in cs.CV

Abstract: 3D surface reconstruction from images is essential for numerous applications. Recently, Neural Radiance Fields (NeRFs) have emerged as a promising framework for 3D modeling. However, NeRFs require accurate camera poses as input, and existing methods struggle to handle significantly noisy pose estimates (i.e., outliers), which are commonly encountered in real-world scenarios. To tackle this challenge, we present a novel approach that optimizes radiance fields with scene graphs to mitigate the influence of outlier poses. Our method incorporates an adaptive inlier-outlier confidence estimation scheme based on scene graphs, emphasizing images of high compatibility with the neighborhood and consistency in the rendering quality. We also introduce an effective intersection-over-union (IoU) loss to optimize the camera pose and surface geometry, together with a coarse-to-fine strategy to facilitate the training. Furthermore, we propose a new dataset containing typical outlier poses for a detailed evaluation. Experimental results on various datasets consistently demonstrate the effectiveness and superiority of our method over existing approaches, showcasing its robustness in handling outliers and producing high-quality 3D reconstructions. Our code and data are available at: \url{https://github.com/Iris-cyy/SG-NeRF}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com