Emergent Mind

A Methodology Establishing Linear Convergence of Adaptive Gradient Methods under PL Inequality

(2407.12629)
Published Jul 17, 2024 in cs.LG , cs.AI , math.OC , and stat.ML

Abstract

Adaptive gradient-descent optimizers are the standard choice for training neural network models. Despite their faster convergence than gradient-descent and remarkable performance in practice, the adaptive optimizers are not as well understood as vanilla gradient-descent. A reason is that the dynamic update of the learning rate that helps in faster convergence of these methods also makes their analysis intricate. Particularly, the simple gradient-descent method converges at a linear rate for a class of optimization problems, whereas the practically faster adaptive gradient methods lack such a theoretical guarantee. The Polyak-{\L}ojasiewicz (PL) inequality is the weakest known class, for which linear convergence of gradient-descent and its momentum variants has been proved. Therefore, in this paper, we prove that AdaGrad and Adam, two well-known adaptive gradient methods, converge linearly when the cost function is smooth and satisfies the PL inequality. Our theoretical framework follows a simple and unified approach, applicable to both batch and stochastic gradients, which can potentially be utilized in analyzing linear convergence of other variants of Adam.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.