Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Evaluating Search Engines and Large Language Models for Answering Health Questions (2407.12468v3)

Published 17 Jul 2024 in cs.IR and cs.AI

Abstract: Search engines (SEs) have traditionally been primary tools for information seeking, but the new LLMs are emerging as powerful alternatives, particularly for question-answering tasks. This study compares the performance of four popular SEs, seven LLMs, and retrieval-augmented (RAG) variants in answering 150 health-related questions from the TREC Health Misinformation (HM) Track. Results reveal SEs correctly answer between 50 and 70% of questions, often hindered by many retrieval results not responding to the health question. LLMs deliver higher accuracy, correctly answering about 80% of questions, though their performance is sensitive to input prompts. RAG methods significantly enhance smaller LLMs' effectiveness, improving accuracy by up to 30% by integrating retrieval evidence.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets