Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Quantile Estimation for Uncertain Watch Time in Short-Video Recommendation (2407.12223v5)

Published 17 Jul 2024 in cs.LG and cs.AI

Abstract: Accurately predicting watch time is crucial for optimizing recommendations and user experience in short video platforms. However, existing methods that estimate a single average watch time often fail to capture the inherent uncertainty in user engagement patterns. In this paper, we propose Conditional Quantile Estimation (CQE) to model the entire conditional distribution of watch time. Using quantile regression, CQE characterizes the complex watch-time distribution for each user-video pair, providing a flexible and comprehensive approach to understanding user behavior. We further design multiple strategies to combine the quantile estimates, adapting to different recommendation scenarios and user preferences. Extensive offline experiments and online A/B tests demonstrate the superiority of CQE in watch-time prediction and user engagement modeling. Specifically, deploying CQE online on a large-scale platform with hundreds of millions of daily active users has led to substantial gains in key evaluation metrics, including active days, engagement time, and video views. These results highlight the practical impact of our proposed approach in enhancing the user experience and overall performance of the short video recommendation system. The code will be released https://github.com/justopit/CQE.

Citations (1)

Summary

We haven't generated a summary for this paper yet.