Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Are Linear Regression Models White Box and Interpretable? (2407.12177v1)

Published 16 Jul 2024 in cs.LG and stat.ML

Abstract: Explainable artificial intelligence (XAI) is a set of tools and algorithms that applied or embedded to machine learning models to understand and interpret the models. They are recommended especially for complex or advanced models including deep neural network because they are not interpretable from human point of view. On the other hand, simple models including linear regression are easy to implement, has less computational complexity and easy to visualize the output. The common notion in the literature that simple models including linear regression are considered as "white box" because they are more interpretable and easier to understand. This is based on the idea that linear regression models have several favorable outcomes including the effect of the features in the model and whether they affect positively or negatively toward model output. Moreover, uncertainty of the model can be measured or estimated using the confidence interval. However, we argue that this perception is not accurate and linear regression models are not easy to interpret neither easy to understand considering common XAI metrics and possible challenges might face. This includes linearity, local explanation, multicollinearity, covariates, normalization, uncertainty, features contribution and fairness. Consequently, we recommend the so-called simple models should be treated equally to complex models when it comes to explainability and interpretability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: