Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Parameter Efficiency and Generalization in Large-Scale Models: A Regularized and Masked Low-Rank Adaptation Approach (2407.12074v1)

Published 16 Jul 2024 in cs.LG and cs.AI

Abstract: Large pre-trained models, such as LLMs, present significant resource challenges for fine-tuning due to their extensive parameter sizes, especially for applications in mobile systems. To address this, Low-Rank Adaptation (LoRA) has been developed to reduce resource consumption while maintaining satisfactory fine-tuning results. Despite its effectiveness, the original LoRA method faces challenges of suboptimal performance and overfitting. This paper investigates the intrinsic dimension of the matrix updates approximated by the LoRA method and reveals the performance benefits of increasing this intrinsic dimension. By employing regularization and a gradient masking method that encourages higher intrinsic dimension, the proposed method, termed Regularized and Masked LoRA (RM-LoRA), achieves superior generalization performance with the same or lower trainable parameter budget compared to the original LoRA and its latest variants across various open-source vision and language datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.