Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Understanding Transformers via N-gram Statistics (2407.12034v2)

Published 30 Jun 2024 in cs.CL, cs.AI, and cs.LG

Abstract: Transformer based large-LLMs display extreme proficiency with language yet a precise understanding of how they work remains elusive. One way of demystifying transformer predictions would be to describe how they depend on their context in terms of simple template functions. This paper takes a first step in this direction by considering families of functions (i.e. rules) formed out of simple N-gram based statistics of the training data. By studying how well these rulesets approximate transformer predictions, we obtain a variety of novel discoveries: a simple method to detect overfitting during training without using a holdout set, a quantitative measure of how transformers progress from learning simple to more complex statistical rules over the course of training, a model-variance criterion governing when transformer predictions tend to be described by N-gram rules, and insights into how well transformers can be approximated by N-gram rulesets in the limit where these rulesets become increasingly complex. In this latter direction, we find that for 79% and 68% of LLM next-token distributions on TinyStories and Wikipedia, respectively, their top-1 predictions agree with those provided by our N-gram rulesets.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

HackerNews

Reddit Logo Streamline Icon: https://streamlinehq.com