Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Faster Algorithms for Schatten-p Low Rank Approximation (2407.11959v1)

Published 16 Jul 2024 in cs.DS

Abstract: We study algorithms for the Schatten-$p$ Low Rank Approximation (LRA) problem. First, we show that by using fast rectangular matrix multiplication algorithms and different block sizes, we can improve the running time of the algorithms in the recent work of Bakshi, Clarkson and Woodruff (STOC 2022). We then show that by carefully combining our new algorithm with the algorithm of Li and Woodruff (ICML 2020), we can obtain even faster algorithms for Schatten-$p$ LRA. While the block-based algorithms are fast in the real number model, we do not have a stability analysis which shows that the algorithms work when implemented on a machine with polylogarithmic bits of precision. We show that the LazySVD algorithm of Allen-Zhu and Li (NeurIPS 2016) can be implemented on a floating point machine with only logarithmic, in the input parameters, bits of precision. As far as we are aware, this is the first stability analysis of any algorithm using $O((k/\sqrt{\varepsilon})\text{poly}(\log n))$ matrix-vector products with the matrix $A$ to output a $1+\varepsilon$ approximate solution for the rank-$k$ Schatten-$p$ LRA problem.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.