Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rethinking Transformer-based Multi-document Summarization: An Empirical Investigation (2407.11948v1)

Published 16 Jul 2024 in cs.CL and cs.AI

Abstract: The utilization of Transformer-based models prospers the growth of multi-document summarization (MDS). Given the huge impact and widespread adoption of Transformer-based models in various natural language processing tasks, investigating their performance and behaviors in the context of MDS becomes crucial for advancing the field and enhancing the quality of summary. To thoroughly examine the behaviours of Transformer-based MDS models, this paper presents five empirical studies on (1) measuring the impact of document boundary separators quantitatively; (2) exploring the effectiveness of different mainstream Transformer structures; (3) examining the sensitivity of the encoder and decoder; (4) discussing different training strategies; and (5) discovering the repetition in a summary generation. The experimental results on prevalent MDS datasets and eleven evaluation metrics show the influence of document boundary separators, the granularity of different level features and different model training strategies. The results also reveal that the decoder exhibits greater sensitivity to noises compared to the encoder. This underscores the important role played by the decoder, suggesting a potential direction for future research in MDS. Furthermore, the experimental results indicate that the repetition problem in the generated summaries has correlations with the high uncertainty scores.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.