Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Thermal Imaging and Radar for Remote Sleep Monitoring of Breathing and Apnea (2407.11936v2)

Published 16 Jul 2024 in cs.CV

Abstract: Polysomnography (PSG), the current gold standard method for monitoring and detecting sleep disorders, is cumbersome and costly. At-home testing solutions, known as home sleep apnea testing (HSAT), exist. However, they are contact-based, a feature which limits the ability of some patient populations to tolerate testing and discourages widespread deployment. Previous work on non-contact sleep monitoring for sleep apnea detection either estimates respiratory effort using radar or nasal airflow using a thermal camera, but has not compared the two or used them together. We conducted a study on 10 participants, ages 34 - 78, with suspected sleep disorders using a hardware setup with a synchronized radar and thermal camera. We show the first comparison of radar and thermal imaging for sleep monitoring, and find that our thermal imaging method outperforms radar significantly. Our thermal imaging method detects apneas with an accuracy of 0.99, a precision of 0.68, a recall of 0.74, an F1 score of 0.71, and an intra-class correlation of 0.70; our radar method detects apneas with an accuracy of 0.83, a precision of 0.13, a recall of 0.86, an F1 score of 0.22, and an intra-class correlation of 0.13. We also present a novel proposal for classifying obstructive and central sleep apnea by leveraging a multimodal setup. This method could be used accurately detect and classify apneas during sleep with non-contact sensors, thereby improving diagnostic capacities in patient populations unable to tolerate current technology.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube