Papers
Topics
Authors
Recent
2000 character limit reached

What's Wrong? Refining Meeting Summaries with LLM Feedback (2407.11919v1)

Published 16 Jul 2024 in cs.CL and cs.AI

Abstract: Meeting summarization has become a critical task since digital encounters have become a common practice. LLMs show great potential in summarization, offering enhanced coherence and context understanding compared to traditional methods. However, they still struggle to maintain relevance and avoid hallucination. We introduce a multi-LLM correction approach for meeting summarization using a two-phase process that mimics the human review process: mistake identification and summary refinement. We release QMSum Mistake, a dataset of 200 automatically generated meeting summaries annotated by humans on nine error types, including structural, omission, and irrelevance errors. Our experiments show that these errors can be identified with high accuracy by an LLM. We transform identified mistakes into actionable feedback to improve the quality of a given summary measured by relevance, informativeness, conciseness, and coherence. This post-hoc refinement effectively improves summary quality by leveraging multiple LLMs to validate output quality. Our multi-LLM approach for meeting summarization shows potential for similar complex text generation tasks requiring robustness, action planning, and discussion towards a goal.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.