Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Ascend-CC: Confidential Computing on Heterogeneous NPU for Emerging Generative AI Workloads (2407.11888v1)

Published 16 Jul 2024 in cs.CR

Abstract: Cloud workloads have dominated generative AI based on LLMs (LLM). Specialized hardware accelerators, such as GPUs, NPUs, and TPUs, play a key role in AI adoption due to their superior performance over general-purpose CPUs. The AI models and the data are often highly sensitive and come from mutually distrusting parties. Existing CPU-based TEEs such as Intel SGX or AMD SEV do not provide sufficient protection. Device-centric TEEs like Nvidia-CC only address tightly coupled CPU-GPU systems with a proprietary solution requiring TEE on the host CPU side. On the other hand, existing academic proposals are tailored toward specific CPU-TEE platforms. To address this gap, we propose Ascend-CC, a confidential computing architecture based on discrete NPU devices that requires no trust in the host system. Ascend-CC provides strong security by ensuring data and model encryption that protects not only the data but also the model parameters and operator binaries. Ascend-CC uses delegation-based memory semantics to ensure isolation from the host software stack, and task attestation provides strong model integrity guarantees. Our Ascend-CC implementation and evaluation with state-of-the-art LLMs such as Llama2 and Llama3 shows that Ascend-CC introduces minimal overhead with no changes in the AI software stack.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com