Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Variational Randomized Smoothing for Sample-Wise Adversarial Robustness (2407.11844v1)

Published 16 Jul 2024 in cs.LG, cs.AI, cs.CR, and stat.ML

Abstract: Randomized smoothing is a defensive technique to achieve enhanced robustness against adversarial examples which are small input perturbations that degrade the performance of neural network models. Conventional randomized smoothing adds random noise with a fixed noise level for every input sample to smooth out adversarial perturbations. This paper proposes a new variational framework that uses a per-sample noise level suitable for each input by introducing a noise level selector. Our experimental results demonstrate enhancement of empirical robustness against adversarial attacks. We also provide and analyze the certified robustness for our sample-wise smoothing method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.