Papers
Topics
Authors
Recent
2000 character limit reached

Friction and Road Condition Estimation by Combining Cause- and Effect-Based Methods using Bayesian Networks (2407.11805v1)

Published 16 Jul 2024 in eess.SP

Abstract: Knowledge about the maximum tire-road friction potential is an important factor to ensure the driving stability and traffic safety of the vehicle. Many authors proposed systems that either measure friction related parameters or estimate the friction coefficient directly via a mathematical model. However these systems can be negatively impacted by environmental factors or require a sufficient level of excitation in the form of tire slip, which is often too low under practical conditions. Therefore, this work investigates, if a more robust estimation can be achieved by fusing the information of multiple systems using a Bayesian network, which models the statistical relationship between the sensors and the maximum friction coefficient. First, the Bayesian network is evaluated over its entire domain to compare the inference process to all possible road conditions. After that, the algorithm is applied to data from a test vehicle to demonstrate the performance under real conditions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.