Papers
Topics
Authors
Recent
2000 character limit reached

Discriminative and Consistent Representation Distillation (2407.11802v5)

Published 16 Jul 2024 in cs.CV and cs.AI

Abstract: Knowledge Distillation (KD) aims to transfer knowledge from a large teacher model to a smaller student model. While contrastive learning has shown promise in self-supervised learning by creating discriminative representations, its application in knowledge distillation remains limited and focuses primarily on discrimination, neglecting the structural relationships captured by the teacher model. To address this limitation, we propose Discriminative and Consistent Distillation (DCD), which employs a contrastive loss along with a consistency regularization to minimize the discrepancy between the distributions of teacher and student representations. Our method introduces learnable temperature and bias parameters that adapt during training to balance these complementary objectives, replacing the fixed hyperparameters commonly used in contrastive learning approaches. Through extensive experiments on CIFAR-100 and ImageNet ILSVRC-2012, we demonstrate that DCD achieves state-of-the-art performance, with the student model sometimes surpassing the teacher's accuracy. Furthermore, we show that DCD's learned representations exhibit superior cross-dataset generalization when transferred to Tiny ImageNet and STL-10.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.