Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A hierarchical dynamical low-rank algorithm for the stochastic description of large reaction networks (2407.11792v2)

Published 16 Jul 2024 in math.NA, cs.NA, physics.bio-ph, and physics.comp-ph

Abstract: The stochastic description of chemical reaction networks with the kinetic chemical master equation (CME) is important for studying biological cells, but it suffers from the curse of dimensionality: The amount of data to be stored grows exponentially with the number of chemical species and thus exceeds the capacity of common computational devices for realistic problems. Therefore, time-dependent model order reduction techniques such as the dynamical low-rank approximation are desirable. In this paper we propose a dynamical low-rank algorithm for the kinetic CME using binary tree tensor networks. The dimensionality of the problem is reduced in this approach by hierarchically dividing the reaction network into partitions. Only reactions that cross partitions are subject to an approximation error. We demonstrate by two numerical examples (a 5-dimensional lambda phage model and a 20-dimensional reaction cascade) that the proposed method drastically reduces memory consumption and shows improved computational performance and better accuracy compared to a Monte Carlo method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com