Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Educational Personalized Learning Path Planning with Large Language Models (2407.11773v1)

Published 16 Jul 2024 in cs.CL

Abstract: Educational Personalized Learning Path Planning (PLPP) aims to tailor learning experiences to individual learners' needs, enhancing learning efficiency and engagement. Despite its potential, traditional PLPP systems often lack adaptability, interactivity, and transparency. This paper proposes a novel approach integrating LLMs with prompt engineering to address these challenges. By designing prompts that incorporate learner-specific information, our method guides LLMs like LLama-2-70B and GPT-4 to generate personalized, coherent, and pedagogically sound learning paths. We conducted experiments comparing our method with a baseline approach across various metrics, including accuracy, user satisfaction, and the quality of learning paths. The results show significant improvements in all areas, particularly with GPT-4, demonstrating the effectiveness of prompt engineering in enhancing PLPP. Additional long-term impact analysis further validates our method's potential to improve learner performance and retention. This research highlights the promise of LLMs and prompt engineering in advancing personalized education.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)