Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robust Utility-Preserving Text Anonymization Based on Large Language Models (2407.11770v2)

Published 16 Jul 2024 in cs.CL

Abstract: Anonymizing text that contains sensitive information is crucial for a wide range of applications. Existing techniques face the emerging challenges of the re-identification ability of LLMs, which have shown advanced capability in memorizing detailed information and reasoning over dispersed pieces of patterns to draw conclusions. When defending against LLM-based re-identification, anonymization could jeopardize the utility of the resulting anonymized data in downstream tasks. In general, the interaction between anonymization and data utility requires a deeper understanding within the context of LLMs. In this paper, we propose a framework composed of three key LLM-based components: a privacy evaluator, a utility evaluator, and an optimization component, which work collaboratively to perform anonymization. Extensive experiments demonstrate that the proposed model outperforms existing baselines, showing robustness in reducing the risk of re-identification while preserving greater data utility in downstream tasks. We provide detailed studies on these core modules. To consider large-scale and real-time applications, we investigate the distillation of the anonymization capabilities into lightweight models. All of our code and datasets will be made publicly available at https://github.com/UKPLab/acl2025-rupta.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube