Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A two-step surrogate method for sequential uncertainty quantification in high-dimensional inverse problems (2407.11600v1)

Published 16 Jul 2024 in math.NA and cs.NA

Abstract: Predictive estimation, which comprises model calibration, model prediction, and validation, is a common objective when performing inverse uncertainty quantification (UQ) in diverse scientific applications. These techniques typically require thousands to millions of realisations of the forward model, leading to high computational costs. Surrogate models are often used to approximate these simulations. However, many surrogate models suffer from the fundamental limitation of being unable to estimate plausible high-dimensional outputs, inevitably compromising their use in the UQ framework. To address this challenge, this study introduces an efficient surrogate modelling workflow tailored for high-dimensional outputs. Specifically, a two-step approach is developed: (1) a dimensionality reduction technique is used for extracting data features and mapping the original output space into a reduced space; and (2) a multivariate surrogate model is constructed directly on the reduced space. The combined approach is shown to improve the accuracy of the surrogate model while retaining the computational efficiency required for UQ inversion. The proposed surrogate method, combined with Bayesian inference, is evaluated for a civil engineering application by performing inverse analyses on a laterally loaded pile problem. The results demonstrate the superiority of the proposed framework over traditional surrogate methods in dealing with high-dimensional outputs for sequential inversion analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube