An implementation of hp-FEM for the fractional Laplacian (2407.11482v1)
Abstract: We consider the discretization of the $1d$-integral Dirichlet fractional Laplacian by $hp$-finite elements. We present quadrature schemes to set up the stiffness matrix and load vector that preserve the exponential convergence of $hp$-FEM on geometric meshes. The schemes are based on Gauss-Jacobi and Gauss-Legendre rules. We show that taking a number of quadrature points slightly exceeding the polynomial degree is enough to preserve root exponential convergence. The total number of algebraic operations to set up the system is $\mathcal{O}(N{5/2})$, where $N$ is the problem size. Numerical example illustrate the analysis. We also extend our analysis to the fractional Laplacian in higher dimensions for $hp$-finite element spaces based on shape regular meshes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.