Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generally-Occurring Model Change for Robust Counterfactual Explanations (2407.11426v1)

Published 16 Jul 2024 in cs.LG, cs.AI, and stat.ME

Abstract: With the increasing impact of algorithmic decision-making on human lives, the interpretability of models has become a critical issue in machine learning. Counterfactual explanation is an important method in the field of interpretable machine learning, which can not only help users understand why machine learning models make specific decisions, but also help users understand how to change these decisions. Naturally, it is an important task to study the robustness of counterfactual explanation generation algorithms to model changes. Previous literature has proposed the concept of Naturally-Occurring Model Change, which has given us a deeper understanding of robustness to model change. In this paper, we first further generalize the concept of Naturally-Occurring Model Change, proposing a more general concept of model parameter changes, Generally-Occurring Model Change, which has a wider range of applicability. We also prove the corresponding probabilistic guarantees. In addition, we consider a more specific problem, data set perturbation, and give relevant theoretical results by combining optimization theory.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)