Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cover-separable Fixed Neural Network Steganography via Deep Generative Models (2407.11405v1)

Published 16 Jul 2024 in cs.CR and cs.CV

Abstract: Image steganography is the process of hiding secret data in a cover image by subtle perturbation. Recent studies show that it is feasible to use a fixed neural network for data embedding and extraction. Such Fixed Neural Network Steganography (FNNS) demonstrates favorable performance without the need for training networks, making it more practical for real-world applications. However, the stego-images generated by the existing FNNS methods exhibit high distortion, which is prone to be detected by steganalysis tools. To deal with this issue, we propose a Cover-separable Fixed Neural Network Steganography, namely Cs-FNNS. In Cs-FNNS, we propose a Steganographic Perturbation Search (SPS) algorithm to directly encode the secret data into an imperceptible perturbation, which is combined with an AI-generated cover image for transmission. Through accessing the same deep generative models, the receiver could reproduce the cover image using a pre-agreed key, to separate the perturbation in the stego-image for data decoding. such an encoding/decoding strategy focuses on the secret data and eliminates the disturbance of the cover images, hence achieving a better performance. We apply our Cs-FNNS to the steganographic field that hiding secret images within cover images. Through comprehensive experiments, we demonstrate the superior performance of the proposed method in terms of visual quality and undetectability. Moreover, we show the flexibility of our Cs-FNNS in terms of hiding multiple secret images for different receivers.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.