Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Data-Driven Controlled Invariant Sets for Gaussian Process State Space Models (2407.11256v1)

Published 15 Jul 2024 in eess.SY and cs.SY

Abstract: We compute probabilistic controlled invariant sets for nonlinear systems using Gaussian process state space models, which are data-driven models that account for unmodeled and unknown nonlinear dynamics. We investigate the relationship between robust and probabilistic invariance, leveraging this relationship to design state-feedback controllers that maximize the probability of the system staying within the probabilistic controlled invariant set. We propose a semi-definite-programming-based optimization scheme for designing the state-feedback controllers subject to input constraints. The effectiveness of our results are demonstrated and validated on a quadrotor, both in simulation and on a physical platform.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.