Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MaPPing Your Model: Assessing the Impact of Adversarial Attacks on LLM-based Programming Assistants (2407.11072v1)

Published 12 Jul 2024 in cs.CR and cs.AI

Abstract: LLM-based programming assistants offer the promise of programming faster but with the risk of introducing more security vulnerabilities. Prior work has studied how LLMs could be maliciously fine-tuned to suggest vulnerabilities more often. With the rise of agentic LLMs, which may use results from an untrusted third party, there is a growing risk of attacks on the model's prompt. We introduce the Malicious Programming Prompt (MaPP) attack, in which an attacker adds a small amount of text to a prompt for a programming task (under 500 bytes). We show that our prompt strategy can cause an LLM to add vulnerabilities while continuing to write otherwise correct code. We evaluate three prompts on seven common LLMs, from basic to state-of-the-art commercial models. Using the HumanEval benchmark, we find that our prompts are broadly effective, with no customization required for different LLMs. Furthermore, the LLMs that are best at HumanEval are also best at following our malicious instructions, suggesting that simply scaling LLMs will not prevent MaPP attacks. Using a dataset of eight CWEs in 16 scenarios, we find that MaPP attacks are also effective at implementing specific and targeted vulnerabilities across a range of models. Our work highlights the need to secure LLM prompts against manipulation as well as rigorously auditing code generated with the help of LLMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.