Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Online Multi-Task Offloading for Semantic-Aware Edge Computing Systems (2407.11018v2)

Published 28 Jun 2024 in cs.NI and eess.SP

Abstract: Mobile edge computing (MEC) provides low-latency offloading solutions for computationally intensive tasks, effectively improving the computing efficiency and battery life of mobile devices. However, for data-intensive tasks or scenarios with limited uplink bandwidth, network congestion might occur due to massive simultaneous offloading nodes, increasing transmission latency and affecting task performance. In this paper, we propose a semantic-aware multi-modal task offloading framework to address the challenges posed by limited uplink bandwidth. By introducing a semantic extraction factor, we balance the relationship among transmission latency, computation energy consumption, and task performance. To measure the offloading performance of multi-modal tasks, we design a unified and fair quality of experience (QoE) metric that includes execution latency, energy consumption, and task performance. Lastly, we formulate the optimization problem as a Markov decision process (MDP) and exploit the multi-agent proximal policy optimization (MAPPO) reinforcement learning algorithm to jointly optimize the semantic extraction factor, communication resources, and computing resources to maximize overall QoE. Experimental results show that the proposed method achieves a reduction in execution latency and energy consumption of 18.1% and 12.9%, respectively compared with the semantic-unaware approach. Moreover, the proposed approach can be easily extended to models with different user preferences.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.