Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

AlleNoise: large-scale text classification benchmark dataset with real-world label noise (2407.10992v2)

Published 24 Jun 2024 in cs.CL and cs.LG

Abstract: Label noise remains a challenge for training robust classification models. Most methods for mitigating label noise have been benchmarked using primarily datasets with synthetic noise. While the need for datasets with realistic noise distribution has partially been addressed by web-scraped benchmarks such as WebVision and Clothing1M, those benchmarks are restricted to the computer vision domain. With the growing importance of Transformer-based models, it is crucial to establish text classification benchmarks for learning with noisy labels. In this paper, we present AlleNoise, a new curated text classification benchmark dataset with real-world instance-dependent label noise, containing over 500,000 examples across approximately 5,600 classes, complemented with a meaningful, hierarchical taxonomy of categories. The noise distribution comes from actual users of a major e-commerce marketplace, so it realistically reflects the semantics of human mistakes. In addition to the noisy labels, we provide human-verified clean labels, which help to get a deeper insight into the noise distribution, unlike web-scraped datasets typically used in the field. We demonstrate that a representative selection of established methods for learning with noisy labels is inadequate to handle such real-world noise. In addition, we show evidence that these algorithms do not alleviate excessive memorization. As such, with AlleNoise, we set the bar high for the development of label noise methods that can handle real-world label noise in text classification tasks. The code and dataset are available for download at https://github.com/allegro/AlleNoise.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: