Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Incentivizing Agents through Ratings (2407.10525v4)

Published 15 Jul 2024 in econ.TH

Abstract: I study the optimal design of ratings to motivate agent investment in quality when transfers are unavailable. The principal designs a rating scheme that maps the agent's quality to a (possibly stochastic) score. The agent has private information about his ability, which determines his cost of investment, and chooses the quality level. The market observes the score and offers a wage equal to the agent's expected quality. For example, a school incentivizes learning through a grading policy that discloses the student's quality to the job market. I reduce the principal's problem to the design of an interim wage function of quality. When restricted to deterministic ratings, I provide necessary and sufficient conditions for the optimality of simple pass/fail tests and lower censorship. In particular, when the principal's objective is expected quality, pass/fail tests are optimal if agents' abilities are concentrated towards the top of the distribution, while pass/lower censorship is optimal if abilities are concentrated towards the mode. The results generalize existing results in optimal delegation with voluntary participation, as pass/fail tests (lower censorship) correspond to take-it-or-leave-it offers (threshold delegation). Additionally, I provide sufficient conditions for deterministic ratings to remain optimal when stochastic ratings are allowed. For quality maximization, pass/fail tests remain optimal if the ability distribution becomes increasingly more concentrated towards the top.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube