Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 30 tok/s
Gemini 3.0 Pro 42 tok/s
Gemini 2.5 Flash 130 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

TCM-FTP: Fine-Tuning Large Language Models for Herbal Prescription Prediction (2407.10510v2)

Published 15 Jul 2024 in cs.CL, cs.AI, and cs.CE

Abstract: Traditional Chinese medicine (TCM) has relied on specific combinations of herbs in prescriptions to treat various symptoms and signs for thousands of years. Predicting TCM prescriptions poses a fascinating technical challenge with significant practical implications. However, this task faces limitations due to the scarcity of high-quality clinical datasets and the complex relationship between symptoms and herbs. To address these issues, we introduce \textit{DigestDS}, a novel dataset comprising practical medical records from experienced experts in digestive system diseases. We also propose a method, TCM-FTP (TCM Fine-Tuning Pre-trained), to leverage pre-trained LLMs via supervised fine-tuning on \textit{DigestDS}. Additionally, we enhance computational efficiency using a low-rank adaptation technique. Moreover, TCM-FTP incorporates data augmentation by permuting herbs within prescriptions, exploiting their order-agnostic nature. Impressively, TCM-FTP achieves an F1-score of 0.8031, significantly outperforming previous methods. Furthermore, it demonstrates remarkable accuracy in dosage prediction, achieving a normalized mean square error of 0.0604. In contrast, LLMs without fine-tuning exhibit poor performance. Although LLMs have demonstrated wide-ranging capabilities, our work underscores the necessity of fine-tuning for TCM prescription prediction and presents an effective way to accomplish this.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.