Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

TCM-FTP: Fine-Tuning Large Language Models for Herbal Prescription Prediction (2407.10510v2)

Published 15 Jul 2024 in cs.CL, cs.AI, and cs.CE

Abstract: Traditional Chinese medicine (TCM) has relied on specific combinations of herbs in prescriptions to treat various symptoms and signs for thousands of years. Predicting TCM prescriptions poses a fascinating technical challenge with significant practical implications. However, this task faces limitations due to the scarcity of high-quality clinical datasets and the complex relationship between symptoms and herbs. To address these issues, we introduce \textit{DigestDS}, a novel dataset comprising practical medical records from experienced experts in digestive system diseases. We also propose a method, TCM-FTP (TCM Fine-Tuning Pre-trained), to leverage pre-trained LLMs via supervised fine-tuning on \textit{DigestDS}. Additionally, we enhance computational efficiency using a low-rank adaptation technique. Moreover, TCM-FTP incorporates data augmentation by permuting herbs within prescriptions, exploiting their order-agnostic nature. Impressively, TCM-FTP achieves an F1-score of 0.8031, significantly outperforming previous methods. Furthermore, it demonstrates remarkable accuracy in dosage prediction, achieving a normalized mean square error of 0.0604. In contrast, LLMs without fine-tuning exhibit poor performance. Although LLMs have demonstrated wide-ranging capabilities, our work underscores the necessity of fine-tuning for TCM prescription prediction and presents an effective way to accomplish this.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.