Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Teaching CORnet Human fMRI Representations for Enhanced Model-Brain Alignment (2407.10414v1)

Published 15 Jul 2024 in cs.CV, cs.LG, q-bio.NC, and eess.IV

Abstract: Deep convolutional neural networks (DCNNs) have demonstrated excellent performance in object recognition and have been found to share some similarities with brain visual processing. However, the substantial gap between DCNNs and human visual perception still exists. Functional magnetic resonance imaging (fMRI) as a widely used technique in cognitive neuroscience can record neural activation in the human visual cortex during the process of visual perception. Can we teach DCNNs human fMRI signals to achieve a more brain-like model? To answer this question, this study proposed ReAlnet-fMRI, a model based on the SOTA vision model CORnet but optimized using human fMRI data through a multi-layer encoding-based alignment framework. This framework has been shown to effectively enable the model to learn human brain representations. The fMRI-optimized ReAlnet-fMRI exhibited higher similarity to the human brain than both CORnet and the control model in within-and across-subject as well as within- and across-modality model-brain (fMRI and EEG) alignment evaluations. Additionally, we conducted an in-depth analyses to investigate how the internal representations of ReAlnet-fMRI differ from CORnet in encoding various object dimensions. These findings provide the possibility of enhancing the brain-likeness of visual models by integrating human neural data, helping to bridge the gap between computer vision and visual neuroscience.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)