Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A proximal-gradient inertial algorithm with Tikhonov regularization: strong convergence to the minimal norm solution (2407.10350v1)

Published 14 Jul 2024 in math.OC, cs.NA, and math.NA

Abstract: We investigate the strong convergence properties of a proximal-gradient inertial algorithm with two Tikhonov regularization terms in connection to the minimization problem of the sum of a convex lower semi-continuous function $f$ and a smooth convex function $g$. For the appropriate setting of the parameters we provide strong convergence of the generated sequence $(x_k)$ to the minimum norm minimizer of our objective function $f+g$. Further, we obtain fast convergence to zero of the objective function values in a generated sequence but also for the discrete velocity and the sub-gradient of the objective function. We also show that for another settings of the parameters the optimal rate of order $\mathcal{O}(k{-2})$ for the potential energy $(f+g)(x_k)-\min(f+g)$ can be obtained.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.