Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cross-Lingual Multi-Hop Knowledge Editing (2407.10275v2)

Published 14 Jul 2024 in cs.CL and cs.AI

Abstract: LLMs are often expected to constantly adapt to new sources of knowledge and knowledge editing techniques aim to efficiently patch the outdated model knowledge, with minimal modification. Most prior works focus on monolingual knowledge editing in English, even though new information can emerge in any language from any part of the world. We propose the Cross-Lingual Multi-Hop Knowledge Editing paradigm, for measuring and analyzing the performance of various SoTA knowledge editing techniques in a cross-lingual setup. Specifically, we create a parallel cross-lingual benchmark, CROLIN-MQUAKE for measuring the knowledge editing capabilities. Our extensive analysis over various knowledge editing techniques uncover significant gaps in performance between the cross-lingual and English-centric setting. Following this, we propose a significantly improved system for cross-lingual multi-hop knowledge editing, CLEVER-CKE. CLEVER-CKE is based on a retrieve, verify and generate knowledge editing framework, where a retriever is formulated to recall edited facts and support an LLM to adhere to knowledge edits. We develop language-aware and hard-negative based contrastive objectives for improving the cross-lingual and fine-grained fact retrieval and verification process used in this framework. Extensive experiments on three LLMs, eight languages, and two datasets show CLEVER-CKE's significant gains of up to 30% over prior methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube