Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 56 tok/s
Gemini 2.5 Flash 158 tok/s Pro
Kimi K2 198 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Low Sensitivity Hopsets (2407.10249v1)

Published 14 Jul 2024 in cs.DS

Abstract: Given a weighted graph $G$, a $(\beta,\varepsilon)$-hopset $H$ is an edge set such that for any $s,t \in V(G)$, where $s$ can reach $t$ in $G$, there is a path from $s$ to $t$ in $G \cup H$ which uses at most $\beta$ hops whose length is in the range $[dist_G(s,t), (1+\varepsilon)dist_G(s,t)]$. We break away from the traditional question that asks for a hopset that achieves small $|H|$ and instead study its sensitivity, a new quality measure which, informally, is the maximum number of times a vertex (or edge) is bypassed by an edge in $H$. The highlights of our results are: (i) $(\widetilde{O}(\sqrt{n}),0)$-hopsets on undirected graphs with $O(\log n)$ sensitivity, complemented with a lower bound showing that $\widetilde{O}(\sqrt{n})$ is tight up to polylogarithmic factors for any construction with polylogarithmic sensitivity. (ii) $(n{o(1)},\varepsilon)$-hopsets on undirected graphs with $n{o(1)}$ sensitivity for any $\varepsilon > 0$ that is at least inverse polylogarithmic, complemented with a lower bound on the tradeoff between $\beta, \varepsilon$, and the sensitivity. (iii) $\widetilde{O}(\sqrt{n})$-shortcut sets on directed graphs with $O(\log n)$ sensitivity, complemented with a lower bound showing that $\beta = \widetilde{\Omega}(n{1/3})$ for any construction with polylogarithmic sensitivity. We believe hopset sensitivity is a natural measure in and of itself, and could potentially find use in a diverse range of contexts. More concretely, the notion of hopset sensitivity is also directly motivated by the Differentially Private All Sets Range Queries problem. Our result for $O(\log n)$ sensitivity $(\widetilde{O}(\sqrt{n}),0)$-hopsets on undirected graphs immediately improves the current best-known upper bound on utility from $\widetilde{O}(n{1/3})$ to $\widetilde{O}(n{1/4})$ in the pure-DP setting, which is tight up to polylogarithmic factors.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: