Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast and Provable Simultaneous Blind Super-Resolution and Demixing for Point Source Signals: Scaled Gradient Descent without Regularization (2407.09900v1)

Published 13 Jul 2024 in cs.IT and math.IT

Abstract: We address the problem of simultaneously recovering a sequence of point source signals from observations limited to the low-frequency end of the spectrum of their summed convolution, where the point spread functions (PSFs) are unknown. By exploiting the low-dimensional structures of the signals and PSFs, we formulate this as a low-rank matrix demixing problem. To solve this, we develop a scaled gradient descent method without balancing regularization. We establish theoretical guarantees under mild conditions, demonstrating that our method, with spectral initialization, converges to the ground truth at a linear rate, independent of the condition number of the underlying data matrices. Numerical experiments indicate that our approach is competitive with existing convex methods in terms of both recovery accuracy and computational efficiency.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)