Papers
Topics
Authors
Recent
2000 character limit reached

VividDreamer: Invariant Score Distillation For Hyper-Realistic Text-to-3D Generation (2407.09822v2)

Published 13 Jul 2024 in cs.CV

Abstract: This paper presents Invariant Score Distillation (ISD), a novel method for high-fidelity text-to-3D generation. ISD aims to tackle the over-saturation and over-smoothing problems in Score Distillation Sampling (SDS). In this paper, SDS is decoupled into a weighted sum of two components: the reconstruction term and the classifier-free guidance term. We experimentally found that over-saturation stems from the large classifier-free guidance scale and over-smoothing comes from the reconstruction term. To overcome these problems, ISD utilizes an invariant score term derived from DDIM sampling to replace the reconstruction term in SDS. This operation allows the utilization of a medium classifier-free guidance scale and mitigates the reconstruction-related errors, thus preventing the over-smoothing and over-saturation of results. Extensive experiments demonstrate that our method greatly enhances SDS and produces realistic 3D objects through single-stage optimization.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.