Papers
Topics
Authors
Recent
2000 character limit reached

MaskMoE: Boosting Token-Level Learning via Routing Mask in Mixture-of-Experts (2407.09816v4)

Published 13 Jul 2024 in cs.CL

Abstract: Scaling the size of a model enhances its capabilities but significantly increases computation complexity. Mixture-of-Experts models (MoE) address the issue by allowing model size to scale up without substantially increasing training or inference costs. In MoE, there is an important module called the router, which is used to distribute each token to the experts. Currently, the mainstream routing methods include dynamic routing and fixed routing. Despite their promising results, MoE models encounter several challenges. Primarily, for dynamic routing methods, the dispersion of training tokens across multiple experts can lead to underfitting, particularly for infrequent tokens. Additionally, though fixed routing methods can mitigate that issue, they compromise on the diversity of representations. In this paper, we propose \textbf{MaskMoE}, a method designed to enhance token-level learning by employing a routing \textbf{mask}ing technique within the \textbf{M}ixture-\textbf{o}f-\textbf{E}xperts model. MaskMoE is capable of maintaining representation diversity while achieving more comprehensive training. Experimental results demonstrate that our method outperforms previous dominant Mixture-of-Experts models in terms of both perplexity (PPL) and downstream task performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube