Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SeqBalance: Congestion-Aware Load Balancing with no Reordering for RoCE (2407.09808v1)

Published 13 Jul 2024 in cs.NI

Abstract: Remote Direct Memory Access (RDMA) is widely used in data center networks because of its high performance. However, due to the characteristics of RDMA's retransmission strategy and the traffic mode of AI training, current load balancing schemes for data center networks are unsuitable for RDMA. In this paper, we propose SeqBalance, a load balancing framework designed for RDMA. SeqBalance implements fine-grained load balancing for RDMA through a reasonable design and does not cause reordering problems. SeqBalance's designs are all based on existing commercial RNICs and commercial programmable switches, so they are compatible with existing data center networks. We have implemented SeqBalance in Mellanox CX-6 RNICs and Tofino switches. The results of hardware testbed experiments and large-scale simulations show that compared with existing load balancing schemes, SeqBalance improves 18.7% and 33.2% on average FCT and 99th percentile FCT.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.