Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Uncovering Weaknesses in Neural Code Generation (2407.09793v2)

Published 13 Jul 2024 in cs.SE

Abstract: Code generation, the task of producing source code from prompts, has seen significant advancements with the advent of pre-trained LLMs (PLMs). Despite these achievements, there lacks a comprehensive taxonomy of weaknesses about the benchmark and the generated code, which risks the community's focus on known issues at the cost of under-explored areas. Our systematic study aims to fill this gap by evaluating five state-of-the-art PLMs: three larger models, CodeGen2.5 with 7 billion parameters, CodeGeeX2 with 6 billion parameters, GPT-4 Turbo, and two smaller ones, UnixCoder with 110 million parameters and CodeT5 base with 220 million parameters, across three popular datasets, CoNaLa, HumanEval Plus, and DS-1000. We assess the quality of generated code using match-based and execution-based metrics, then conduct thematic analysis to develop a taxonomy of nine types of weaknesses. We dissected weakness distributions in both larger and smaller models, applying an extensive methodology that encompasses model-specific as well as collective analysis (union and intersection) across models. Our research uncovers three salient findings: 1. In the CoNaLa dataset, inaccurate prompts are a notable problem, causing all large models to fail in 26.84% of cases, with even higher failure rates of 40% for smaller models; 2. Missing pivotal semantics is a pervasive issue across benchmarks, with one or more large models omitting key semantics in 65.78% of CoNaLa tasks, and similarly high occurrences in HumanEval Plus (66.09%) and DS-1000 (80.51%); 3. All models struggle with proper API usage, a challenge amplified by vague or complex prompts. Our findings aim to steer researchers towards addressing specific weaknesses and challenges in code generation. Furthermore, our annotations can offer a targeted benchmark subset for detailed analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube