Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Convex space learning for tabular synthetic data generation (2407.09789v2)

Published 13 Jul 2024 in cs.LG

Abstract: Generating synthetic samples from the convex space of the minority class is a popular oversampling approach for imbalanced classification problems. Recently, deep-learning approaches have been successfully applied to modeling the convex space of minority samples. Beyond oversampling, learning the convex space of neighborhoods in training data has not been used to generate entire tabular datasets. In this paper, we introduce a deep learning architecture (NextConvGeN) with a generator and discriminator component that can generate synthetic samples by learning to model the convex space of tabular data. The generator takes data neighborhoods as input and creates synthetic samples within the convex space of that neighborhood. Thereafter, the discriminator tries to classify these synthetic samples against a randomly sampled batch of data from the rest of the data space. We compared our proposed model with five state-of-the-art tabular generative models across ten publicly available datasets from the biomedical domain. Our analysis reveals that synthetic samples generated by NextConvGeN can better preserve classification and clustering performance across real and synthetic data than other synthetic data generation models. Synthetic data generation by deep learning of the convex space produces high scores for popular utility measures. We further compared how diverse synthetic data generation strategies perform in the privacy-utility spectrum and produced critical arguments on the necessity of high utility models. Our research on deep learning of the convex space of tabular data opens up opportunities in clinical research, machine learning model development, decision support systems, and clinical data sharing.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.