Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Asymptotic PCA: Identifying Sparse Latent Factors Across Time Horizon (2407.09738v2)

Published 13 Jul 2024 in stat.ME, econ.EM, q-fin.ST, and stat.ML

Abstract: This paper introduces a novel sparse latent factor modeling framework using sparse asymptotic Principal Component Analysis (APCA) to analyze the co-movements of high-dimensional panel data over time. Unlike existing methods based on sparse PCA, which assume sparsity in the loading matrices, our approach posits sparsity in the factor processes while allowing non-sparse loadings. This is motivated by the fact that financial returns typically exhibit universal and non-sparse exposure to market factors. Unlike the commonly used $\ell_1$-relaxation in sparse PCA, the proposed sparse APCA employs a truncated power method to estimate the leading sparse factor and a sequential deflation method for multi-factor cases under $\ell_0$-constraints. Furthermore, we develop a data-driven approach to identify the sparsity of risk factors over the time horizon using a novel cross-sectional cross-validation method. We establish the consistency of our estimators under mild conditions as both the dimension $N$ and the sample size $T$ grow. Monte Carlo simulations demonstrate that the proposed method performs well in finite samples. Empirically, we apply our method to daily S&P 500 stock returns (2004--2016) and identify nine risk factors influencing the stock market.

Summary

We haven't generated a summary for this paper yet.