Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fine-Grained Optimality of Partially Dynamic Shortest Paths and More (2407.09651v1)

Published 12 Jul 2024 in cs.DS and cs.CC

Abstract: Single Source Shortest Paths ($\textrm{SSSP}$) is among the most well-studied problems in computer science. In the incremental (resp. decremental) setting, the goal is to maintain distances from a fixed source in a graph undergoing edge insertions (resp. deletions). A long line of research culminated in a near-optimal deterministic $(1 + \varepsilon)$-approximate data structure with $m{1 + o(1)}$ total update time over all $m$ updates by Bernstein, Probst Gutenberg and Saranurak [FOCS 2021]. However, there has been remarkably little progress on the exact $\textrm{SSSP}$ problem beyond Even and Shiloach's algorithm [J. ACM 1981] for unweighted graphs. For weighted graphs, there are no exact algorithms beyond recomputing $\textrm{SSSP}$ from scratch in $\widetilde{O}(m2)$ total update time, even for the simpler Single-Source Single-Target Shortest Path problem ($\textrm{stSP}$). Despite this lack of progress, known (conditional) lower bounds only rule out algorithms with amortized update time better than $m{1/2 - o(1)}$ in dense graphs. In this paper, we give a tight (conditional) lower bound: any partially dynamic exact $\textrm{stSP}$ algorithm requires $m{2 - o(1)}$ total update time for any sparsity $m$. We thus resolve the complexity of partially dynamic shortest paths, and separate the hardness of exact and approximate shortest paths, giving evidence as to why no non-trivial exact algorithms have been obtained while fast approximation algorithms are known. Moreover, we give tight bounds on the complexity of combinatorial algorithms for several path problems that have been studied in the static setting since early sixties: Node-weighted shortest paths (studied alongside edge-weighted shortest paths), bottleneck paths (early work dates back to 1960), and earliest arrivals (early work dates back to 1958).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 19 likes.

Upgrade to Pro to view all of the tweets about this paper: