Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Granger Causality in Extremes (2407.09632v2)

Published 12 Jul 2024 in stat.ML, cs.LG, math.ST, stat.ME, and stat.TH

Abstract: We introduce a rigorous mathematical framework for Granger causality in extremes, designed to identify causal links from extreme events in time series. Granger causality plays a pivotal role in uncovering directional relationships among time-varying variables. While this notion gains heightened importance during extreme and highly volatile periods, state-of-the-art methods primarily focus on causality within the body of the distribution, often overlooking causal mechanisms that manifest only during extreme events. Our framework is designed to infer causality mainly from extreme events by leveraging the causal tail coefficient. We establish equivalences between causality in extremes and other causal concepts, including (classical) Granger causality, Sims causality, and structural causality. We prove other key properties of Granger causality in extremes and show that the framework is especially helpful under the presence of hidden confounders. We also propose a novel inference method for detecting the presence of Granger causality in extremes from data. Our method is model-free, can handle non-linear and high-dimensional time series, outperforms current state-of-the-art methods in all considered setups, both in performance and speed, and was found to uncover coherent effects when applied to financial and extreme weather observations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets